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parallel data. That is, Speakers
A and B must read hundreds of
sentences with the same con-
tent to teach the machine how to
transform content between their
voices, which is not practical. A
new GAN-based approach to VC
is proposed. Only audio content
from Speakers A and B is need-
ed. They do not have to read the
same sentences, and they do not
even have to speak the same
language.

Unsupervised speech recogni-
tion [4,5]

A completely unsupervised
speech recognition framework
in which only unrelated speech
utterances and text sentences
are needed for model training
is proposed. An unsupervised
phoneme recognition accuracy
of 36% is achieved in the prelimi-
nary experiments. This is the first

attempt at reaching the goal of
completely unsupervised speech
recognition. With this technolo-
gy, a machine can learn a new
language in a novel linguistic en-
vironment with little supervision.
Imagine an intelligent assistant
bought by a family speaking
Taiwanese. Although it does not
understand Taiwanese at the
beginning, by hearing people
speaking Taiwanese, it automati-
cally learns the new language.
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Dependency structure matrix genetic

algorithm Il

Introduction

pendency structure matrix ge-

netic algorithm Il (DSMGA-II)
[1], which is currently a state-of-
the-art discrete genetic algorithm.
Based on the dependency struc-
ture matrix (DSM), a new linkage
model called the incremental
linkage set (ILS) is adopted in
DSMGA-II to provide potential
models for mixing. Restricted
mixing and back mixing are the
major recombination operators of
DSMGA-II. Such a combination
significantly reduces the number

I n 2015, we proposed the de-

of function evaluations (NFE)
compared with those of other
optimal mixing operators. Ex-
periment results show that DS-
MGA-II requires fewer function
evaluations than the linkage tree
genepool optimal mixing evolu-
tionary algorithm (LT-GOMEA)
[2] and the hierarchical Bayesian
optimization algerithm (hBOA)
[3], two previously used state-
of-the-art genetic algorithms, on
various benchmark problems.

DSMGA-II consists of four
major components: pairwise
linkage detection, model build-
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ing, restricted mixing and back
mixing. First, DSMGA-II ran-
domly initializes a population.
Then, to enhance the quality of
the pairwise linkage model and
reduce noise in the population,
DSMGA-II performs bit-flipping
greedy hill climbing (GHC) on
each chromosome. Performing
GHC before linkage model build-
ing can further ensure pairwise
linkage information between
genes by ruling out trivial cases
that can be solved without link-
age information. After initializing
the population, only the selected
chromosomes are used to build
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the linkage model. DSMGA-II
adopts mutual information as a
pairwise linkage measure and
stores linkage information in a
DSM. Then, recombination via
the restricted and back mixings

proceeds with the original popu-
lation. To prevent overfitting due
to frequent model building, the
algorithm updates DSM once
every O(l) generations, where |
is the problem size. Note that the

population after selection is only
used for updating the DSM; the
rest of the algorithm proceeds
with the original population. The
pseudo code of DSMGA-II is pre-
sented in Algorithms 1, 2, and 3.

Algorithm 1: DSMGA-II

‘P: population, £: problem size D: DSM, L: incremental

linkage set, R: constant
randomly initialize population P
P + RUNLOCALSEARCH(P)
while “SHOULDTERMINATE do

D + UPDATEMATRIX(S)
for k=1 to R do

fori=1 to |P| do

return the best instance in P

S + TOURNAMENTSELECTION(P,
Z <+ random permutation from 1 to |P|

(Pr;, Ls) < RESTRICTEDMIXING (P, )
P + BACKMIXING (P, Ls)

s)

Algorithm 3: Back Mixing
‘P: population, f: evaluation function, 7" trial solution
E: set of candidate solutions
Input: D : donor, L: mask

improved < false
for j =1 to |P| do
T« P;

T < Dt
if f(T) > f(P;) then
PieT

Algorithm 2: Restricted Mixing

improved < true

P: population, ¢: problem size,
C'" set of vertices in AMWCS

L: incremental linkage set, f: evaluation function,

T trial solution
Input: P : receiver

AMWCS < random number from 1 to ¢

while P, € P do
L+~LUC

else

if f(T) = f(P;) then
L | E « EU{T}

if —improved then
| accept all solutions in E

join the nearest vertex into AMWCS

for i =1 to |£| do
T'e—P
T[,,,. = TI,,,-
if f(T)>f(P) and T ¢ P then
P11
return (P, L;)

Performance of DSMGA-II

Six types of linkage bench-
mark problems are tested, includ-
ing four classical linkage-underly-
ing problems and two real-world
problems. These benchmark
problems cover the wide range
of different characteristics of re-
al-world problems. Their mathe-
matical formulations are listed in
the following table.

return P
Problems Equation Problems Equations
folded “olded -k
trap trap (vi-k f'{’f”“: )= 'llf’{':" ’ (Z}:i'k*kﬂxj)
S @)= Ei fi (Z}:ivk—kﬂxj)
Concatenated Folded 1, iflu=3=3
trap trap 1 ifu=k trap folded 0.8, iflu=3|=0
u) = u) =
L@ % otherwise Fi=s @) 04 Hlw=3]=1
0, iflu=3=2
cyclic _ trap i-(k=1)+1 X
Foke ) =Z fy (Zj:i~(k—1)—k+2xf) NK () = (C-k-Dfs
Cyclic ks ™) = Zizo
e i et NK-landscape
. ifu= =
f,:mp(u) B {k_,_“ i f,:"ﬁbNK(xi-sn.xi-ﬁz-~--Xi~_s+k+|)
= s
2D Spin-glass e, MAX-SAT F=Am, (vjﬁ;, f,~,—)

Table 1. Six types of linkage benchmark problems are tested, including four
classical linkage-underlying problems and two real-world problems.
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The experimental results are
shown in Figures 1 to 3. Figure
1 shows that the differences be-
tween DSMGA-II and the other
algorithms become larger as the
degree of overlap decreases.
During the initial back mixing
process, a few function evalua-
tions are performed to refine the

NK-81

NK-S3

graph. As the linkage information
becomes clearer, the correct
subsolution stands out, and back
mixing causes the subsolution to
quickly dominate the population.
This approach makes the algo-
rithm more efficient. However, if
the problem structures severely
overlap, the graph refining pro-

Concatenated Trap

cess is prolonged, and hence,
the NFE increases. The results
indicate that DSMGA-II is capa-
ble of handling problems with
overlapping structures, even for
randomly generated problem
landscapes. In other words, the
ILS model expresses overlapping
relations well.

Cyclic Trap
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Figure 1. Scalability of DSMGA-II, LT-GOMEA and hBOA
on NK-landscape problems with various degrees of
overlap.

Figure 2. Scalability of DSMGA-Il, LT-GOMEA and
hBOA on the problems of deceptive variants.

The results pertaining to de-
ceptive variants are shown in Fig-
ure 2. For the concatenated trap,
the slope of DSMGA-II decreases
asa the problem becomes larger.
For the cyclic trap, the scala-
bilities of all algorithms appear
very similar to that of DSMGA-II,
which is the lowest by a constant
factor. As previously mentioned,
the cyclic trap cannot be solved
efficiently merely by the correct
problem decomposition. The use

Spin—glass

of linkage information is also key.
ILS automatically extends the
mask for trials and stops on the
first successful recombination
to avoid spending unnecessary
function evaluations, while many
other genetic algorithms utilize
the linkage models determined
by certain thresholds, which are
sensitive to the parameter set-
tings. The folded trap contains a
large number of local optima that
reside on plateaus. Performing

MAX-SAT

NFE
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ProblemSize
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~o- DSMGA-II --LT-GOMEA - hBOA 20

an efficient search without los-
ing too much diversity is the key
to conquering such a difficulty.
Back mixing leads to the drift of
subsolutions as necessary, and
restricted mixing checks whether
the trial solution is unique in the
population to maintain diversity.
As a result, DSMGA-Il shows a
good ability to address attrac-
tions without trading efficiency for
diversity.

Figure 3. Scalability of DSMGA-II, LT-GOMEA and hBOA on
Spin-glass and MAX-SAT (*LT- GOMEA fails to reach the
global optima for two instances with | = 100 on MAX-SAT).
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For the Ising spin-glass prob-
lems, the slope of DSMGA-II de-
creases as the problem becomes
larger (Figure 3). This trend is
probably observed because the
problems contain a large num-
ber of plateaus, for which the
advantages of DSMGA-II hold.
The overall amount of time spent
on fitness evaluations appears
to grow polynomially as O(n®)
for DSMGA-II, which is close to
the best known result of prob-
lem-specific algorithms for Ising
spin-glass problems. For MAX-

SAT problems, although the NFE
of DSMGA-II still grows exponen-
tially (because it is a well-known
NP-complete problem), DSM-
GA-Il consumes fewer functional
evaluations than hBOA and LT-
GOMEA.

In 2017, we proposed mod-
ifying the linkage model [4] by
separating two different types
of linkage and produced a two-
edge graphical model (Figure 4).
With this modified linkage model,
DSMGA-IlI consumes 5~30%

N, S

ij D3 20 @3 20 D3
(@) /

\

fewer function evaluations on the
abovementioned test problems.

In summary, genetic algo-
rithms have been widely used for
black-box optimization in many
different areas of engineering.
Having a more competent opti-
mizer means that we can have
a better performing system, a
stronger architecture, a faster
bullet train (Figure 5), and most
importantly, a more convenient
life.

Figure 5. The shape of the nose cone of the
N700 bullet train was designed by genetic
algorithms.

Figure 4. (a) The original linkage model in DSMGA-II. (b) The two-
edge graphical model, where the homogenous linkages are black
and the heterogeneous linkages are red. (c) and (d) Two cases of
ILS for different alleles.
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